Placenta is the gateway for fetal survival. The effects of anaemia in pregnancy can be diverse and detrimental to the mother and the fetus. The present study aims to observe and compare the gross features of placenta at term in anaemic and non-anaemic mothers of North Bengal and to find out the clinical relevance of such changes. Total 30 placentas were collected from each group of selected patients after delivery at labour room. An examination of umbilical cord, membranes, fetal surface, and maternal surface was carried out. In anaemic mothers, mean baby birth-weight was found to be significantly less than that of control group. The mean placental weight, the mean placental volume and mean placental area in test group was significantly increased in comparison to controls. Occurrence of sub-chorial fibrosis, retro-placental clot, gross calcification, or placental infarction etc. were found to increase manifold in anaemic mothers. In the present study, it is proved that placenta has considerable functional reserve capacity. It tends to limit the ill-effects of tissue injury and of unfavourable maternal milieu like anaemia.

KEYWORDS
Placenta, Maternal anaemia, Morphological changes, Placental weight

INTRODUCTION:
Placenta is the most accurate record of the infants’ prenatal experience\(^1\). It is the vital organ for maintaining pregnancy and promoting normal fetal development. Maturation of placenta causes an increase in the placental nutrient transfer capacity and thus improves placental efficiency, permitting an increase in the number of grams of fetal weight supported by every gram of placental mass. Not surprisingly “Placental insufficiency” is invoked commonly in case of impaired fetal growth\(^2\).

At full term, the Placental dimensions are as follows:
- Weight (approx.): 500gm, diameter: 15-20 cm; thickness: 3cm; volume: 500ml. Length of umbilical cord: 50 cm; breadth: 2cm.

These measurements vary widely; there are several types of human placentas with variant cord insertions, and also shape: rounded in 81.6%, oval in 16%, irregular in 2.4%\(^3\). Flattened discoid shape of placenta with an approximately circular outline was described as normal\(^4\) as well as in maternal iron-deficiency anaemia\(^5\).

Size of placenta can be calculated by measuring its diameter, thickness, area, weight and volume\(^6\). Usually, the placenta is 150-200 mm (average 185 mm) in diameter and 10-40mm (average 23mm) in thickness\(^7\). Previously it was observed that presence of low maternal haematoic was associated with higher placental weight\(^8\). Recent studies suggested an increase in placental weight in anaemic mothers\(^9\). There is probably a compensatory physiological hypertrophy of the placenta resulting from inadequate oxygen supply to the fetus\(^1\).

Volume of the placenta is proportional to its weight\(^2\). Placental volume is markedly reduced in abnormally small babies\(^10\). Volume of placenta is increased in male babies than females\(^10\). Because of the fact that placenta has a normally unrealized potential for incremental growth\(^10\), certain patho-physiological conditions such as high altitude, severe anemia and maternal heart failure are associated with unusually large placental volume.

Placenta extrachorialis, the commonest developmental variant of the placenta is found in 25% of all placentas. Circumvallate form of placenta extrachorialis, whether partial or complete, is associated with an increased incidence of low birth weight\(^11,12,13\), congenital malformation\(^14\), prematurity, maternal bleeding and abortion\(^15\). The normal placenta can contain 8-20 cotyledons\(^16\). Reduced number of cotyledons can be seen in maternal malnutrition, especially in severe anaemia\(^10\). Calcification of placenta is a sign of physiological maturity of placenta\(^17\). More mature and heavy the placenta more is the extent of calcified patches\(^17\). Placental calcification occurs earlier in pregnancy in cigarette smokers\(^18,19\).

Placenta is subjected to cystic degeneration also, related to maturation\(^19\). Out of a series of 630 placentas collected from cases of toxemia and diabetes, 40 had cystic changes\(^20\). Placental infarction is described as an area of necrotic changes; extensive infarction is the hallmark of a described “The placental infarct as a consequence of necrosis of maternal cotyledon caused by occlusion of the utero-placental artery those supply it”. V. Paul Wentworth\(^20\) divided infarct into “red infarcts” and “other true infarcts” and also found two similar macroscopic lesions and termed them “peri villous fibrin deposition” and “mottled infarct”. Thrombosis within the tissue is a feature of both normal and abnormal placentas. The clinical significance of such thrombosis is either not known or proved to be none\(^20\). Placenta is the mirror of the feto-maternal status. The effect of anaemia in pregnancy can be so diverse and detrimental to both mother and developing fetus that it prompted us to carry on the present study to know whether placenta, an organ acting as a bridge between mother and fetus, is associated with major changes in anaemia. Finally, an attempt has been made to confirm, agree or deny the findings of the previous workers in this field.

MATERIALS AND METHODS:
The study was conducted during the period of one year in the department of Anatomy in collaboration with the Department of Pathology and Department of Obstetrics & Gynaecology, North Bengal Medical College & Hospital, Darjeeling, India, which caters for patients from all possible social status. The placentas were collected from booked cases delivered in the Department of Obstetrics & Gynaecology. Permission from the ethics committee was taken; informed consent was taken from the patients. Gravid females up to third parity (P1 to P3), aged between 17-30 years; height ranging of 148-170 cm and weight ranging from 50 - 60 kg were taken into consideration. Routine investigations such as blood grouping, Rh typing, Haemoglobin percentage, Fasting Blood sugar, VDRL, Urine for routine & microscopic examination were conducted and recorded separately for future references both for test and control groups.

Patients suffering from complications such as hypertension, pre-eclampsia, eclampsia, diabetes, ante-partum haemorrhage, heart disease and other gross maternal systemic disorders were excluded.

Control Group (Group I): This group included healthy non-anaemic mothers free from significant medical, surgical and obstetrical complications and 30 placentas were collected in this series following live birth only.

Test Group (Group II): This group includes anaemic mothers diagnosed clinically and haematologically otherwise free from significant medical, surgical and obstetrical complications and 30 placentas were collected in this series following live birth.
Fresh placentas were collected from the patients selected beforehand. After delivery at labour room, placentas were collected and placed in a bowl for subsequent examination. Examinations of placenta were conducted according to proforma adopted by Benirschke [1]. Immediately on collection of placenta, a general survey of umbilical cord, membranes, fetal surface and maternal surface was carried out. Then membranes of placenta were trimmed off by a sharp scissor near the margin as described by Aherne [13]. The placentas were subsequently cleansed free and washed in water.

Following parameters of the placenta were determined:

(a) **Dimensions:** The maximum & the minimum diameters were measured by using the measuring tape. Thickness of each placenta was measured at its centre & three other places by piercing the placenta by a long needle calibrated in cm. The average thickness of the placenta was measured to the nearest 0.1 cm.

(b) **Area:** The area of placenta was estimated in sq. cm using the formula for the area of an ellipse. Therefore

\[\text{Placental area (cm.2)} = \pi \times \text{Max Diameter (cm.)} / 2 \times \text{Min diameter (cm.)}/2 \]

(c) **Weight:** It was weighed in the same scale used to measure fetal weight

(d) **Volume:** Estimated by water displacement method. A four-liter graduated cylindrical plastic bucket was taken. Two litres of water was taken in the bucket. Volume of water displaced following immersion of placenta into water was measured.

(e) **Shape:** Shape was noted; whether it was round or oval or any other type.

THE FETAL SURFACE was examined by placing the placenta flat on the table with fetal surface upwards (Fig. 1). Then following features were noted:

(a) **Insertion of the umbilical cord:** Whether it is eccentric, central, battle door or velamentous insertion.

(b) **Insertion of membranes:** Whether the insertion of membranes on the placenta was marginal or circumvallate was noted.

(c) **Amnion:** was examined for its color & translucency.

(d) **Amnion nodosum:** Presence or absence was noted.

(e) **Cyst:** Each placenta was examined carefully for presence of cyst. Cyst above the diameter of 0.5 cm was taken into account.

(f) **Sub-chorionic fibrosis:** Placentas were examined for presence or absence of Sub-chorionic fibrosis and finding were noted accordingly.

(g) **Calcification:** Sites of calcification, a common feature of placenta were also ascertained and noted.

Table 1. Baby birth-weight and placental morphometric study in control (non-anemic) group of mother at term

<table>
<thead>
<tr>
<th>Sex of baby</th>
<th>No. of cases</th>
<th>Avg. baby birth wt. (in kg)</th>
<th>Avg. pla. wt. (in gm)</th>
<th>Avg. pla. vol. (in ml)</th>
<th>Avg. pla. dia. (in cm)</th>
<th>Avg. pla. thick. (in cm)</th>
<th>Avg. pla. area (in cm2)</th>
<th>Avg. No. of cotyledon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placenta with Male baby</td>
<td>17</td>
<td>2.60±0.28</td>
<td>473.5±17.5</td>
<td>400.88±24</td>
<td>18.38±1.0</td>
<td>1.78±0.2</td>
<td>265.86±22.7</td>
<td>17.47±1.0</td>
</tr>
<tr>
<td>Placenta with Female baby</td>
<td>13</td>
<td>2.57±0.33</td>
<td>457.6±21.6</td>
<td>396.15±38</td>
<td>18.4±1.0</td>
<td>1.79±0.1</td>
<td>266.24±23.0</td>
<td>17.46±1.1</td>
</tr>
<tr>
<td>All cases</td>
<td>30</td>
<td>2.58±0.29</td>
<td>466.6±20.6</td>
<td>398.8±14.1</td>
<td>18.56±1.7</td>
<td>1.79±0.1</td>
<td>266.03±22.4</td>
<td>17.46±1.0</td>
</tr>
</tbody>
</table>

Group II: Test (Anemic) group:

included anemic mothers who were otherwise healthy, i.e., free from significant medical, surgical and obstetrical, Thirty cases, i.e., 50% of total cases, were studied in this series. Only 5 cases had the minor obstetric history, i.e. previous MTP. There were eleven primigravida, eleven second gravid, and nine third gravida. The investigation reports/findings of all the cases were absolutely normal. Only 4 cases had the minor obstetric history, i.e. previous MTP.

Blood hemoglobin levels were ranging from 11.00 gm% to 14.00 gm% for all the cases of this group.

Mean birth weight of baby in Group I was found to be 2.589 kg, which was heavier in males (2.602 kg) than female (2.572 kg). Placental morphometric values showed almost comparable results in both sexes; except for weight and volume, which were more in male than in female (Table 1). The average numbers of cotyledons were 17.

Table 2. Baby birth weight and placental morphometric study in anaemic group of mothers at term (test group)

<table>
<thead>
<tr>
<th>Sex of baby</th>
<th>No. of cases</th>
<th>Avg. baby birth wt. (in kg)</th>
<th>Avg. pla. wt. (in gm)</th>
<th>Avg. pla. vol. (in ml)</th>
<th>Avg. pla. dia. (in cm)</th>
<th>Avg. pla. thick. (in cm)</th>
<th>Avg. pla. area (in cm2)</th>
<th>Avg. No. of cotyledon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placenta with Male baby</td>
<td>18</td>
<td>2.25±0.3</td>
<td>500±53.4</td>
<td>438.3±49.8</td>
<td>19.40±1.1</td>
<td>1.90±0.2</td>
<td>295.78±30.4</td>
<td>12.94±2.1</td>
</tr>
<tr>
<td>Placenta with Female baby</td>
<td>12</td>
<td>2.06±0.3</td>
<td>505.4±53.8</td>
<td>457.5±88.4</td>
<td>19.35±1.0</td>
<td>1.90±0.2</td>
<td>293.10±23.5</td>
<td>12.83±1.6</td>
</tr>
<tr>
<td>All cases</td>
<td>30</td>
<td>2.18±0.3</td>
<td>502.16±50.7</td>
<td>446.0±67.1</td>
<td>19.38±1.1</td>
<td>1.90±0.2</td>
<td>294.71±27.5</td>
<td>12.90±1.9</td>
</tr>
</tbody>
</table>

Fig. 1: Examination of Fetal Surface

Maternal Surface of the placenta was examined by placing it on the table with the maternal surface directed upwards (Fig. 2) to note whether it is complete or incomplete. The color of maternal surface also noted. In addition, following features were examined:

(a) **Blood clot:** Evidence of any blood clot if present; the size of the same was measured & noted.

(b) **Calcification:** By direct visual assessment presence or absence of calcification was noted.

(c) **Infarcts:** thorough search was made for any macroscopic infarcts.

(d) **Number of cotyledons** in the maternal surface was counted.

Fig. 2: Examination of Maternal Surface

RESULTS & ANALYSIS:

In the present study, the placentas were studied in two groups:

Group I: Control (Non-anemic) group: Included 30 placentas, 50% of total cases were studied in this series. There were ten primigravida, eleven second gravid, and nine third gravid. The investigation reports/findings of all the cases were absolutely normal. Only 4 cases had the minor obstetric history, i.e. previous MTP.

Blood hemoglobin levels were ranging from 11.00 gm% to 14.00 gm% for all the cases of this group.

Mean birth weight of baby in Group I was found to be 2.589 kg, which was heavier in males (2.602 kg) than female (2.572 kg). Placental morphometric values showed almost comparable results in both sexes; except for weight and volume, which were more in male than in female (Table 1). The average numbers of cotyledons were 17.
The mean baby birth weight at term in control group is 2.589 kg, but in test group it is decreased to 2.182 kg. This decrease of 407 gm is highly significant (p value is less than 0.001). The mean placental weight at term in control group was found to be 466.7 gm, but in test group it increased (502.2 gm), this was statistically significantly (p value is <0.025).

The mean placental volume at term in control group was 398.8 ml, but in test group it increased to 446.0 ml. This increase is statistically highly significant. (p value is 0.000689).

The mean placental area at term in control group is 266.0 cm², in test group it is 294.7 cm², it is statistically significant. (p-value is 4.56328E-05). Numbers of cotyledons were found to be significantly reduced in anemic mothers. Comparative statements of gross morphological features of placenta yielded some interesting results (Table 3).

<table>
<thead>
<tr>
<th>S. NO</th>
<th>Morphological features</th>
<th>Non-anaemic mothers</th>
<th>Anaemic mothers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Circular</td>
<td>67%</td>
<td>67%</td>
</tr>
<tr>
<td>3</td>
<td>Oval</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>4</td>
<td>Cotyledons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ill-defined cotyledons</td>
<td>17%</td>
<td>20%</td>
</tr>
<tr>
<td>6</td>
<td>Succentrate lobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Insertion of cord</td>
<td>67%</td>
<td>60%</td>
</tr>
<tr>
<td>8</td>
<td>Eccentric</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>9</td>
<td>Central</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Marginal</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Membrane attachment</td>
<td>93%</td>
<td>90%</td>
</tr>
<tr>
<td>12</td>
<td>Marginal</td>
<td>07%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Circum-vallate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Presence of sub-chorionic fibrosis</td>
<td>13%</td>
<td>17%</td>
</tr>
<tr>
<td>15</td>
<td>Presence of sub-chorionic cyst</td>
<td>7%</td>
<td>10%</td>
</tr>
<tr>
<td>16</td>
<td>Retro placental blood clot</td>
<td>10%</td>
<td>17%</td>
</tr>
<tr>
<td>17</td>
<td>Gross calcification</td>
<td>13%</td>
<td>20%</td>
</tr>
<tr>
<td>18</td>
<td>Infarction</td>
<td>07%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Change of shape of placenta could not be related to anaemia. A marginal increase in number of ill-defined cotyledons and succenturate lobe could be observed in anaemic mothers. Incidence of eccentric insertion of cord was slightly lower, that of central insertion was same; while that of marginal insertion was slightly greater in anaemic mothers. Peculiarly enough, marginal membrane attachment is found to more while circumvallate attachment is less in the anaemic group. The presence of sub-chorionic fibrosis, like sub-chorionic fibrosis or cyst; retro-placental clot, gross calcification, or placental infarction etc. were found to be significantly higher in anaemic mothers in comparison to non-anaemic control group.

DISCUSSION:

The placenta is functionally the most important and vital organ related to intra uterine life. It is subjected to various defects and diseases just like the other vital organs of the body. Various clinical conditions such as anaemia, diabetes, hypertension, etc have a detrimental effect on the placenta which may seriously affect health and even life of the fetus. Even though researches on this subject were being carried out by various workers, studies on placental changes in anaemia have lagged behind than that of diabetes, hypertension, etc. Present study was conducted to examine the macroscopic changes in placentas from normal (non-anaemic) and anaemic mothers. A significant reduction of the baby birth-weight had been observed in anaemic mothers, as was expected (Fig. 3). The cause can be attributed to reduction in the ‘exchange-surface’ of placenta, directly related to the maternal haemoglobin level and hence anaemia. To be precise, the low levels of placental iron or cord serum iron in severely anaemic mothers suggests that fetal intake of iron is directly proportional to the level of available iron in the maternal blood.

The placental weight is the single most important factor reflecting fetal growth. From the study it has been seen that the mean weight of placenta at term is 466.67 (±20.69) gm in non-anaemic group and 502.17 (+50.73) gm in anaemic group (Fig. 4).

Fig. 3: Baby Birth weight

Fig. 4: Weight of the Placenta

The findings in the non-anaemic mothers of the present study are compared with results from other studies (Table 4). It can be noted that there is only slight difference in mean weight of term placenta published by various authors. It is also evident that placental weight maintains more or less a constant relation with the fetal weight. The placento-fetal weight ratio (P/F ratio) varies from 0.126 to 0.185, which is comparable to the findings (0.179) of the present study.

Though the mean birth weights of the babies were low, the mean placental weight and P/F ratio was observed to be similar to previous studies. Possibly low birth weights of the babies in the present series were due to low socio-economic status of the patients.

In the anemic group, mean placental weight was found to be significantly increased possibly due to uniform physiological compensatory growth. This increase in the placental weight was reported by majority of the previous workers working with all sorts of anaemia including iron-deficiency anaemia and anaemia due to low haematocrit. The present study hence conforms to the findings and conclusion of the previous study.

Table 4: Comparison of placental weight, baby birth weight by different authors with the present study.

<table>
<thead>
<tr>
<th>Author</th>
<th>No. of cases</th>
<th>Gestational week</th>
<th>Baby birth weight (grams)</th>
<th>Placental weight (grams)</th>
<th>P/F ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little et al.</td>
<td>855</td>
<td>37-41</td>
<td>3215</td>
<td>451</td>
<td>0.14</td>
</tr>
<tr>
<td>Gruenwald et al.</td>
<td>800</td>
<td>37-38</td>
<td>3318</td>
<td>488</td>
<td>0.147</td>
</tr>
<tr>
<td>Younszai et al.</td>
<td>85</td>
<td>37-42</td>
<td>3313</td>
<td>420</td>
<td>0.126</td>
</tr>
<tr>
<td>Shah et al.</td>
<td>93</td>
<td>37-42</td>
<td>2814</td>
<td>522</td>
<td>0.185</td>
</tr>
<tr>
<td>Present study</td>
<td>30</td>
<td>38</td>
<td>2589</td>
<td>466</td>
<td>0.179</td>
</tr>
</tbody>
</table>

In the present study, it has been shown that the volume of the placenta has been increased to 446.00 (± 67.19) ml in anaemic group than the control group which was 398.83 (± 14.12) ml (Fig. 5).
Kuizion et al. (11) reported that anemic mothers had placental hypertrophy. The hypertrophy was probably a compensatory physiological response to ensure adequate oxygen supply to the fetus. The placentae of these cases showed no significant variations with the previous studies in this field. In the present study, it was observed that the placenta has no considerable functional reserve capacity that it can repair any damage it suffers with commendable ease; thus we concluded that the placenta with iron deficiency anaemia’s compensatory mechanisms which tend to limit the ill-effects of both tissue injury and of unfavourable maternal milieu like anaemia. Also, the findings of the present study were in accordance with the previous studies in this field in maximum possible ways.

REFERENCES: